IX More classification results
A. The Farey graph
we will need to keep track of curves on tori the Farcy graph is a convenient way to do that
recall after fixing a basis $\lambda_{1} \mu$ for $H_{1}\left(\tau^{2}\right)$ we can represent any simple closed curve γ as

$$
p \lambda+q \mu \text { or } \quad\binom{p}{q}
$$

where pay are relatively prime and further as $9 / p \in \mathbb{Q}^{*}=\mathbb{Q} \cup\{\infty\}$ so simple closed curves on $T^{2} \leftrightarrow \mathbb{Q}^{*}$
the Farcy graph lives in the unit disk $D^{2} \subset \mathbb{R}^{2}$
put the hyperbolic metric $\frac{4}{\left(1-r^{2}\right)} 9$ Fucudden $\left(\begin{array}{l}\text { doit redly need wis, just } \\ \text { use to connect points on } \\ \text { aD }\end{array}\right)$
we construct the farcy graph as follows
table the point $(0,1)$ by $0=\frac{0}{1}$

$$
(0,-1) \text { be } \infty=\frac{1}{0}
$$

connect them with a hyperbolic geodesci

if p is a point on ∂D^{2} with positive x-word that is half way between labled polit $\frac{a}{b}$ and $\frac{c}{d}$ label p with $\frac{a+c}{b+d}$ and

connect p to $\frac{a}{b}, \frac{c}{d}$ by a hyperbolic geodes sic iterate construction
now do same for $p \in \partial D^{2}$ with negative x-coord but use $\infty=\frac{-1}{0}$ urstead of $\frac{1}{0}$

exercise:

1) show all elements in \mathbb{Q}^{*} show up as tables in the Farey graph and they are "is order" moving clockwise from $-\infty$ to ∞
2) show two verticies correspond to curves that form a basis for $H_{1}\left(\tau^{2}\right)$ ff \exists an edge between them in Farcy graph
we let $\left[S_{0}, S_{1}\right]$ denote the reticles in the Farcy graph that are clockwise of s_{0} and anticlockwise of s_{1}
(including end points) similarly for $\left(s_{0}, s_{1}\right),\left(s_{0}, s_{1}\right]$, and $\left[s_{0}, s_{1}\right)$
example:

B. Basic ̄ slices
a contact manifold ($\left.T^{2} \times[0,1],\right\}$) is called a basic slice if
3) $\{$ is tight
4) $T_{1}=T^{2} \times\{i\}$ is convex with $\# \Gamma_{T_{1}}=2$ for $2=0,1$
5) v_{0}, v_{2} form an integral basis for $H_{1}\left(T^{2} \times\{0\}\right)$ where v_{i} is a minimal length vector with slope equal to the slope s_{i} of $\Gamma_{T_{i}}$ ie. $s_{0,} s_{1}$ connected by an edge in Farey graph
6) the slope of the dividing curves on any convex torus T in $T^{2} \times[0,1]$ is in $\left[s_{0}, s_{1}\right]$
this condition is called minimally twisting
Th" $1:$
for each pair of slopes s_{0}, S_{1} comected by an edge in the Farcy graph there are exactly two basic slices with dividing slopes s_{0} and s_{1}.
Moreover, their relative Euler classes are given by

$$
\pm\left(v_{1}-v_{0}\right) \in H_{2}\left(T^{2} \times[0,1]\right) \cong H^{2}\left(T^{2} \times\left[0,1,2,\left(T^{2} \times[0, T)\right)\right.\right.
$$

where v_{i} is as in (3) above

Proof:
we prove theorem for $s_{0}=\infty$ and $s_{1}=-1$
the general case follows since there is a differ of $\tau^{2} \times[0,1]$
taking any S_{0}, S_{1} as in thin to $\infty,-1$
Thin clearly follows from
lemma 2:
there are at most two basic slices
with $s_{0}=\infty$ and $s_{1}=-1$
Lemma 3:
there are two basic slices with $s_{0}=\infty$ and $s_{1}=-1$ and they are distinguished by their relative Euler classes which are $\binom{ \pm 1}{0} \in H^{2}\left(T^{2} \times\{0,13, \partial) \cong H_{1}\left(T^{2} \times[0,1]\right)\right.$

Proof of lemma 2:
let 3 be a basic slice with $s_{0}=\infty, s_{1}=-1$
the characteristic fol ${ }^{\text {n }}$ on $\partial\left(T^{2} \times[0,1)\right)$ determines ? near boundory let T_{i} be a convex torus in an invariant neighborhood of $\tau_{x}^{2}\{i\}$ we can assume the char $f_{0}{ }^{\prime \prime}$ on T_{i} is standard with ruling slope 0
let A be an annulus running from T_{0} to T_{1} so that ∂A is a ruling curve on T_{0} union one on T_{1} we can make A convex (why!)
Γ_{A} near ∂A is

by lemma VII. 11
by Giroux criria only possibilities for Γ_{A}
are

slope 0

or 2 curves of slope n

If we had first case then we could Legendrion realize (Th ${ }^{\text {MIII. 7) }}$
a slope 0 carve L on A
let T^{\prime} be a torus isotopic to $\partial\left(T^{2} \times\{0,1\}\right)$
that contains L
we can make T ' convex without moving L (Why?)
now since $t_{w_{3}}\left(L, T^{\prime}\right)=0$ but must be $-\frac{1}{2} \#\left(L \cap \Gamma_{\tau^{\prime}}\right)$
we see L is disjoin f from $\Gamma_{\tau^{\prime}}$
so T^{\prime} is a convex torus with slope $0 \&[\infty,-1]$ $\$$ minimal twisting so cant have this Γ_{A}
Claim: \qquad Γ_{A} has slope 0

So 3 determined near A !
given this we can cut $T^{2} \times\left\{0_{1} 1\right]$ along A to get a sold torus S

what is Γ_{s} ?

if we round corners as in lemma VII. 12 we get

that is ∂S has 2 dividing curves of slope $\frac{-1}{2}$ we can isotop ∂s to be in standard form with dividing slope ∞ let D be a menidicinal dusk for S witt ∂D a ruling curve we can make D convex (Why?) by lemma VIII. 11 and Giroux criterion we know Γ_{D} is

If we fix one of these then contact structure is determmied near D note what is left is a 3-ball so Eliashberg's
classification on B^{3} determines, here
note: In the whole process above there was only one place where the contact structure was not completely determined by the initial data.
That was the dividing set on D and there were only two possibilities
\therefore there are at most 2 basic slices!,
Proof of Claim:
we isotop A as follows

T_{i}^{\prime} a copy of T_{i} pushed in along contact vector field copy of 4 with ∂ ruling curves on $T_{0}^{\prime} 0 T_{1}^{\prime}$
for A 'as shown above and round corners
A^{\prime} is smoothly isotopic to A and if
Γ_{A} was

then Γ_{A} is

exencuse: why did out 2 rounding go up instead of down like all others?
so slope went from -1 to 0
keep doing this can go from any neg. slope to 0
exencise: show that pushing A in the other direction will decrease the slope by 1

Proof of lemma 3:
consider $T_{(x, y)}^{2} \times \mathbb{R}_{z}$ with contact structure

$$
\}=\operatorname{ker}((\sin 2 \pi z) d x+(\cos 2 \pi z) d y)
$$

notice when we pull $?$ back to the universal coven \mathbb{R}^{3} we get a contact structure contactomorphic to the standard one thus it, and 3, are tight
consider $T^{2} \times[0,1 / 8]$
note: 1) $T^{2} \times\{03$ has a linear fo ln of slope ∞
2) $\tau^{2} \times\{1 / 8\}$
" " " " -1
as we did in the example just after Th ${ }^{\text {III }} 4$ we can c^{∞} small perturb $\tau^{2}+\{0,1 / 8\}$ so that they are convex with 2 dividing curves of slope ∞ and -1 , respectively denote this contact manifold by $\left.\left(T^{2} \times[0,1],\right\}\right)$ and note it obviously satisfies all the properties of being a basic slice execpt being minimally twisting so we are left to show this
we need a lemma, but first some notation
let $M_{r, r}=T^{2} \times[a, b]$ with contact structure $\}$ above such that the slope of characteristic foliation
on $T^{2} \times\{a\}$ is r and
on $\tau^{2} \times\{b\}$ is r^{\prime}
and $0<b-a<\frac{1}{2}$
note char fol on $T^{2} x\{+\}$ is linear and moving from r clockwise to r^{\prime}
if $s \&\left[r_{1} r^{\prime}\right]$ then there is no convex torus in $M_{r_{0}}$, isotopic to $\partial M_{\text {err }}$ with dividing slope s (also no linen foll of slope s)
assume this for now and we finish the proof of lemma 3 recall our $\left.\left(\tau^{2} \times[0,1],\right\}\right)$ was obtained from $\tau^{2} \times[0,1 / 8]$ with $\operatorname{ker}(\sin (2 \pi z) d x+\cos (2 \pi z) d y)$ by perturbing
the boundary to be convex
we discuss this purturbation more carefully (focusing on $T^{2} \times\{0$ \}
but same applies to $T^{2} \times\{1 / 8\}$)
Ja function $f: T^{2} \rightarrow[-\delta . \delta]$ such that the grap of f in $T^{2} \times \mathbb{R}$ makes $T^{2} \times\{0\}$ convex

$$
\text { let } f_{t}(\rho)=+f(\rho) \text { for } t \in[0,1]
$$

let $\left(M_{+} i_{t}\right)$ be the contact manifold obtacied from $T^{2} \times[0,1 / 8]$ by purtarbing $\tau^{2} \times\{0\}$ by f_{t} (and similarly for $T^{2} \times\left\{c_{8}\right\}$)
note: $M_{t} \subset T^{2} \times\left[-+s_{1} 1 / 8+t \delta\right]$
from lemma 4 we know $T^{2} \times[-+\delta, 1 / \gamma+\delta]$
contains no convex tori parallel to boundary with slope outside $\left[1 / \varepsilon_{t},-1+\varepsilon_{t}\right]$ for some $\varepsilon_{t} \rightarrow 0$ as $t \rightarrow 0$
note: each M_{+}is canonically (up to isotopy) $T^{2} \times[0.1]$ we only use t to make clear which subset of $T^{2} \times \mathbb{R}$ we are talking about
Claim: $\left.\left(M_{1}\right)\right)=\left(M_{1}, \Omega_{1}\right)$ is contactomorphic to a subset of $\left(M_{t}, i_{t}\right)$ for $t \in[0,1]$, by a contactomorphism that does not charge slopes on $T^{2} \times\{s\}$
given this we see $(\mu, 3)$ is minimally twisting, since if not, there is a torus T with slope s outside $[\infty,-1]$
$\therefore S$ is outside $\left[\frac{1}{\varepsilon_{t}},-1+\varepsilon_{t}\right]$ for some t but $(\mu, 3) \subset\left(\mu_{t}, T_{t}\right) \subset T^{2} \times[-+\delta, 1 / 8++\delta]$ this contradicts observation above!

Proof of Clam:
for each $t \in(0,1]$ there is some ubhd $N_{t}=T^{2} \times[-\varepsilon, \varepsilon]$ of groph of f_{t} on which $\}$ is $[-\varepsilon, \varepsilon]$-invariont
let $O_{t}^{\prime}=\left\{s \in[0,1]\right.$ st. graph of $f_{s}<$ int $\left.N_{t}\right\}$
$O_{t}=$ open, connected subset of O_{t}^{\prime} containing t
want to see for fixed $t_{0} \in(0,1]$ can assume $\left(\mu_{1,}, 1_{1}\right) \subset\left(\mu_{t_{0^{\prime}}} ?_{t_{0}}\right)$
if $t_{0} \in O_{1}$ then note

let $T^{\prime} u T^{\prime \prime}=\partial N_{1}$
let μ_{1}^{\prime} be region in $T^{2} \times \mathbb{R}$ banded by T^{\prime} and corresponding T^{\prime} for $T^{2}+\{4 \%\}$
$M_{1}^{\prime \prime}$ be same but for $T^{\prime \prime}$
note: $M_{1}, M_{1}^{\prime}, M_{1}^{\prime \prime}$ all contactomorphic!
and $M_{1}^{\prime} \subset M_{t_{0}}$ as claimed, and $M_{t_{0}} \subset M_{1}^{\prime \prime}$
if $t_{0} \notin O_{1}$ but $O_{t_{0}} \cap O_{1} \neq \varnothing$ contains t_{1} then from above $\mu_{1} \subset \mu_{t_{1}} \subset \mu_{t_{0}}$
exercise: do general case
Proof of lemma 4:
suppose there were such a forms T
exencuse: there is a slope s^{\prime} such that $s^{\prime}<s<r<r^{\prime}$
Hint: consider Farey graph

exencise: there is a diffeomorphism ϕ of T^{2} sending s to ∞ and s^{\prime} to 0
and ϕ sends r, r ' to negative integers
extend ϕ to a differ $T^{2} \times[a, b]$ to ifseld by id on $[a, b]$
exercise: Show $\left.\phi_{*}\right\}$ is a subset of the contact structure

$$
\operatorname{ker}(\sin (2 \pi z) d x+\cos (2 \pi z) d y) \text { on } \tau^{2} x(0,1 / 4)
$$

exencise: $\left(T^{2} \times(0,4 / 4), \operatorname{her}(\sin (2 \pi z) d x+\cos (2 \pi t) d y)\right)$ embeds in $\left(5^{3}, r_{s t d}\right)$
Hint: think of S^{3} as unit sphere in \mathbb{C}^{2}
$H=\left\{z_{1}=0\right\} \cup\left\{z_{2}=0\right\}$ is a Hoof link is s^{3}
$S^{3}-H=T^{2} \times(0,1)$ and contact planes
tangent to $(0,1)$-factor and induce linen forth on $\tau^{2} \times\{t\}$ with slope in $(\infty, 0)$ and nioreasing as + goes from 0 to 1
$\therefore \phi\left(M_{r, r 1}\right) \subset S^{3}$ as a ubhd of a Heegaard torus and $\phi(T)$ is a convex torus with dividing slope 0
a Legondrion divide on $\phi(\tau)$ bounds a disk

$$
\therefore \text { Tb (this unknot) }=0 \text { \& tightness }
$$

\therefore T does not exist

